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F'ROGRFSS I N  NASA PROGRAMS EY)R D E V E ' L Q m  OF HIGH TEMEEFiATURE ALLOYS FOR ADVANCED ENGINES 

by John C. Freche and Robert W. H a l l  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

the NASA L e w i s  Research Center t o  provide improved 
materials for the hot components of advanced a i r -  
c r a f t  gas turbine engines. Research is being con- 
ducted both in-house and under NASA sponsorship t o  
develop advanced materials fo r  such applications as 
s t a to r  vanes, turbine buckets and disks, combustion 
chamber l i ne r s  and the l a t t e r  compressor stages. 
Major areas of work deal with the development of 
nickel and cobalt-base alloys, chromium base a l -  
loys, dispers'ion strengthened materials, composite 
materials, and protective coatings. Progress in  
NASA programs dealing with a l l  these areas is de- 
scribed. 

An intensive research e f fo r t  is underway a t  

r- 
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INTRODUCTION 

To meet the demand for  increased performance, 
designers of advanced a i r c ra f t  gas turbine engines 
must ra i se  the turbine in l e t  gas temperature. A i r  
cooling affords a way of accommodating these higher 
gas temperatures by permitting materials t o  be used 
a t  gas temperatures higher than those s e t  by t h e i r  
current strength limitations. However, cooling 
must be paid for by increased engine complexity and 
by some sacr i f ice  in performance, when compared 
with the same temperatures, if achieved without 
cooling. 
t i ve  t o  provide materials t ha t  w i l l  survive a t  
higher temperatures thus permitting higher gas tem- 
peratures - e i ther  without cooling o r  a t  l ea s t  with 
reduced cooling requirements. 
improved high temperature materials f o r  engine com- 
ponents such as  s t a to r  vanes, turbine buckets and 
disks, t rans i t ion  ducts, combustion chamber l iners,  
and the l a t t e r  compressor stages. The NASA Lewis  
Research Center is actively participating in  re- 
search t o  provide advanced materials fo r  such ap- 
plications both by conducting in-house work and by 
funding research in  other organizations. 

The problems associated with such advanced ma- 
t e r i a l s  development are many and varied. Depending 
upon the engine component, materials must operate 
a t  temperatures ranging between approximately 1200° 
and 2200' F (649' and 1204O C) .  Since the economic 
production of power is  paramount in  such applica- 
t ions as the SST, the operating time requirement is 
on the order of thousands of hours. Superimposed 
upon the temperature and time requirements are 
other factors such as  s t ress ,  s t ra in ,  thermal and 
mechanical fatigue, and the erosive, corrosive e f -  
f ec t s  of high velocity combustion gases. 

l esser  extent cobalt base alloys have been and con- 
t inue t o  be the workhorse materials f o r  the hot 
components of gas turbine engines. Current nickel 
base alloys contain a large number of alloying con- 
s t i tuents  which contribute t o  one or  more of three 
basic alloy strengthening mechanisms, intermetal- 
l i c ,  solid solution, and carbide strengthening. 
The most important single factor contributing t o  
the retention of high temperature strength in  
nickel base alloys is precipitation of the N i P l  

It therefore remains an important objec- 

There is  a need for 

Cast and wrought nickel base alloys and t o  a 

- 

intermetall ic phase, known as gamma prime. 
phase has the  u s e f i l  f a c i l i t y  of being able t o  take 
in to  solution various quantit ies of other elements 
without changing its basic c rys ta l  structure ( fcc) .  
The presence of these elements in  gamma prime can 
significantly a l t e r  the properties of the phase and 
therefore the alloys. Cobalt base alloys, due t o  
the lack of a potent strengthening mechanism such 
as the gamma prime phase, have lower strength than 
nickel-base alloys over most of t h e i r  usefultem- 
perature range. However, above approximately 
2050' F (1121° C),  the maximum solutioning temper- 
ature of gamma prime, cobalt base alloys tend t o  
have higher strength when oxidation can be control- 
led. The higher melting point of cobalt (2720' F, 
1493O C)  compared t o  tha t  of nickel (2650' F, 
1454' C) a l so  suggests that cobalt-base alloys may 
have useful strength t o  higher temperature levels. 

siderable promise f o r  extending the useful temper- 
ature range of base metals. 
TD nickel and i ts  modifications in  which a fine, 
extremely stable dispersion of Tho2 par t ic les  is  
provided i n  a nickel o r  nickel-chromium matrix. 
These materials have great promise as wrought al-  
loys for use in  s t a to r  vanes up t o  approximately 
2400' F (1316' C) .  However, the strength of the  
dispersion strengthened materials currently avail-  
able is not adequate for  turbine blade applica- 
tions. 

This 

Dispersian strengthened materials offer con- 

A notable example i s  

Composite materials a l so  afford great poten- 
t i a l  f o r  vastly increasing high temperature 
strength capability. 
materials such as tungsten can be enclosed in  a 
lower melting point metal o r  a l loy  matrix t o  
achieve outstanding high temperature strength. 
development of t h i s  category of materials is s t i l l  
i n  its infancy, but if problems of incompatibility 
between the f ibers  and matrix can be overcome sub- 
s t a n t i a l  gains may be realized. 

Chromium alloys represent another major class 
of materials with potential  f o r  application t o  the 
hot sections of a i r c ra f t  turbine engines. Because 
of i ts  high melting point (3434' F, 1890' C) ,  chro- 
m i u m  should re ta in  useful strength t o  higher tem- 
peratures than e i ther  nickel o r  cobalt-base alloys. 
However, problems associated with inherent low- 
temperature br i t t l eness  and severe nitrogen embrit- 
tlement result ing from high temperature exposure t o  
air  must be overcome before the high temperature 
strength advantage of chromium alloys can be u t i -  
l ized i n  turbine engines. For use a t  even higher 
temperatures, al loys of the refractory metals tan- 
talum and niobium deserve consideration. However, 
t he i r  inherently poor oxidation resistance is  a 
serious deterrent t o  the i r  use. 

Associated with a l l  of these materials is the 
need t o  provide satisfactory protective coatings t o  
r e s i s t  the erosive-corrosive action of high veloc- 
i t y  combustion gases in  the hot sections of the 
turbine engine. The need f o r  such coatings varies 
i n  degree depending upon the base metal being con- 
sidered. Thus, chromium alloys probably are 

Fibers of high melting point 

The 
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unl ike ly tobe  used i n  an a i r  environment Until  sat- 
isfactory coatings a re  developed. 
hold t rue  t o  an even greater degree f o r  the very 
refractory metals such as columbium and tantalum. 
However, even nickel and cobalt-base alloys require 
coatings if they a re  t o  be used economically and up 
t o  the i r  highest use temperature potential. 

A l l  d f  the preceding developmental areas a re  
under investigation e i the r  a t  the NASA or under 
NASA sponsorship. Some of the highlights of t h i s  
research is described i n  the ensuing sections of 
t h i s  paper. 

This would a l so  

PJICXEL AND COBALT ALLOY RJ3SEARCH 

Since the  development of Nimonic 75 i n  the 
1930ts ,  the high temperature strength of nickel- 
base superalloys has gradually improved t o  levels 
obtainable in  currently used alloys such as I N  100, 
MAR-EOO, and INC0713C. Similarly, cobalt base al- 
loys have been improved in  high temperature 
strength s t a r t i ng  with X - 4 0  which was used in World 
War I1 turbine engines, t o  current alloys such as 
WI-52 and M A R - W Z .  Significant improvements i n  
high temperature capability, including strength, 
oxidation resistance, and duc t i l i t y  have been 
achieved in  cast  nickel and cobalt-base superalloys 
as  a resu l t  of NASA research programs. 

Conventionally Cast Alloys 

e r a l  NASA nickel and cobalt-base alloys as well as 
representative commercial alloys. The TAG8 
nickel-base a l loy  ser ies  and the cobalt-tungsten 
a l loy  ser ies  resulted from in-house research pro- 
grams. (l-l.o) The NASA-TRW VI-A nickel a l loy  as  
developed a t  TRW Inc. under NASA sponsorship.7ll) 

High temperature strength. Fig. 1 compares 
the s t ress  rupture properties of alloys VI-A and 
TU-8 with currently used cast  nickel base alloys 
a t  15 000 psi .  A l l  of the alloys shown are in  the 
random polycrystalline form. Alloy VI-A shows ap- 
proximately a 50' F improvement i n  use-temperature 
over its nearest competitors and has a 1000 hour 
l i f e  a t  1875' F and 15 000 psi. The TAZ-8 alloys, 
although basically cas t  materials, have a l so  been 
successfully fabricated into bar and sheet. For 
example, th'ickness reductions of 50 percent were 
obtained with 1/2-inch diameter as-cast bars by 
unidirectional forging techniques a t  room tempera- 
t u re . (4 )  
were rolled i t o  sheet s t r ip s  approximately 0.020 
inch thick. (77 Such workability potential  is bene- 
f i c i a l  i n  t ha t  it broadens the applicabili ty of 
these alloys and they need not be limited solely t o  
cast  configurations. 

Fig. 2 i l l u s t r a t e s  the as-cast, s t ress -  
rupture properties of two NASA cobalt-base alloys. 
These alloys, due t o  t h e i r  low chromium content, 
are significantly d i f fe ren t  i n  composition from 
currently used cobalt base alloys which a l l  contain 
chromium in  quantit ies between 2 1  and 28 percent. 
Despite t h e i r  low chromium content catastrophic 
oxidation c lear ly  did not occur with e i the r  of 
these alloys in  the unprotected condition, even a t  
the highest t e s t  temperatures. This is reflected 
by t h e i r  good high temperature s t r e s s  rupture per- 
formance. However, it must be recognized that ade- 
quate protective coatings must be developed for 
these alloys i f  they a re  t o  be used for  longtime 
turbine applications. These alloys, although 
basically cast  materials are a l so  readily work- 
able. (9,101 

Table I lists the nominal compositions of sev- 

Cast slabs of TAZ-eA, 0.110 inch thick 

This a l loy  ser ies  was originally designed for 
space power system applications as a means of re- 
ducing anticipated evaporative losses with conven- 
t i ona l  high-chromium bearing cobalt base alloys. 
However, t h e i r  excellent high temperature strength 
suggests t ha t  they may have potential  f o r  s t a to r  
vane applications in advanced turbine engines. 
Further developmental work with t h i s  a l loy  ser ies  
toward t h i s  end is  under way a t  NASA. 

Oxidation resistance. Other properties be- 
sides strength must be considered in  designing a l -  
loys fo r  gas turbine engine applications. 
the most important of these is  oxidation r e s i s t -  
ance. Fig. 3 compares the s t a t i c  oxidation be- 
havior of various nickel base alloys a t  1900° F 
(1038' C) on a conventional weight gain basis.  In  
the vacuum-melted condition W-8A compares favor- 
ably with a l l  of the other alloys up t o  310 hours, 
but the steeper slope of i t s  weight gain curve sug- 
gests t ha t  its oxidation resistance would be l e s s  
than that of MAR-bEOO a f t e r  longer exposure times. 
Oxidation data were not obtained a t  the  same t e s t  
conditions with e i ther  TU-8B o r  a l loy  VI-A so tha t  
a d i rec t  comparison cannot be made on t h i s  plot. 
However, t h e i r  oxidation resistance as determined 
from other t e s t s  and visual examination of tes ted  
stress-rupture specimens is about equivalent t o  
tha t  of TAZ-8A. It must be emphasized however, 
t ha t  conventional s t a t i c  oxidation t e s t s  do not 
consti tute a f i n a l  evaluation of an a l loy ' s  ox 
t i on  resistance in the complex gas turbine env 
ment . 
s t i ck  for screening purposes. 
a l loy  for  oxidation-erosion resistance, dynamic 
t e s t s  must be conducted in  which the alloys can be 
exposed t o  a l te rna te  cycles of high and low temper- 
atures in gas streams having velocit ies up t o  
Mach 1. Such studies are currently under way with 
various alloys both a t  the Lewis Research Center 
and under contract a t  other organizations. These 
are discussed in  a l a t e r  section of the paper. 

Microstructural s t ab i l i t y .  Exposure f o r  times 
on the order of several thousands of hours a t  tem- 
perature can a l t e r  the phases present i n  nickel and 
cobalt base alloys as well as  t h e i r  morphology. 
Formation of sigma phase has been observed in  
nickel base alloys a f t e r  long t i m e  service exposure 
in  the 1450' t 1700' F (788' t o  927' C) tempera- 
ture range.(l27 The formation of t h i s  phase can 
significantly reduce t ens i l e  duc t i l i t y  as well as 
creep-rupture l i f e .  
is possible t o  predict with reasonable accuracy 
whether or  not an a l loy  w i l l  form sigma by calcu- 

the residual matrix a f t e r  other phases such as  
gama prime and the  carbides have precipitated. To 
do t h i s  requires that assumptions be made as t o  the 
manner in  which the elements present i n  the a l loy  
are partitioned in  forming the carbides, borides, 
and the gamma prime phase. 
various elements remaining a f t e r  such phase forma- 
t ion,  scaled t o  100, are equivalent t o  the  residual 
matrix composition. Electron vacancy numbers a re  
assigned t o  each-element. The average electron- 
vacancy number NV of the residual matrix is then 
determined by summing the products of the atomic 
fraction of each element times i t s  electron-vacancy 
number. If the calculated average electron vacancy 
number is  below the  cut-off point f o r  s t a b i l i t y  as  
determined from experimental data for representa- 
t i ve  nickel base alloys, sigma phase would not be 

One of 

Sta t i c  oxidation data a re  useful as a yard- 
To f u l l y  evaluate an 

It has been shown(l3) t h a t  it 

l a t ing  the electron-vacancy concentration iTv of 

The amounts of the 
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expected t o  form. The N' for  TAZ-8A and TAZ-8B 
werT8jalculated t o  be 2.2x and 2.27, respective- 
ly, 
The Rv fo r  a l loy  VI-A was similarly calculated t o  
be 2.17. 
loy fo r  1000 and 1500 hours, respectively, a t  
1600' F (871' C) did not resu l t  i n  sigma phase for- 
mation in  e i ther  alloy. 

form in superalloys. 
Laves phase formation observed in the widely used 
cobalt base superalloy L-605. 
reduce the room temperature elongation of t h i s  a l -  
loy from approximately 45 percent t o  3 percent 
a f t e r  a 1000 hour exposure a t  1600' F (871O C ) .  
Research done a t  NASA(14) showed tha t  by reducing 
s i l icon ,  which s tab i l izes  the Co2W Iaves phase in  
t h i s  alloy, the amount o f  Iaves phase precipitation 
could be lessened and post aging duc t i l i t y  in- 
creased. This is  shown in  Fig. 4. When s i l icon  
content was res t r ic ted  t o  l e s s  than 0.3 percent, 
the room temperature elongation a f t e r  1000 hours 
exposure a t  1600' F (871' C) w a s  approximately 
15 percent, as compared t o  about 2.5 percent for  
the higher s i l i con  content heats. The introduction 
of cold work prior t o  aging t o  change the nature of 
the precipitation from a preferential  intergranular 
type t o  a more homogeneous type within the grains 
w a s  also shown t o  improve the post aging duc t i l i t y  
of t h i s  alloy. (15) The importance of  maintaining 
good duc t i l i t y  in turbine engine materials cannot 
be overstated since both thermal and mechanical f a -  
t igue resistance can be adversely affected by de- 
creases in  duc t i l i ty .  

Directionally Solidified Alloys 
A t  high temperatures a frequent fa i lure  mode 

in cast  nickel base alloys is  intercrystall ine 
fracture along grain boundaries transverse to the 
major s t ress  axis. 
that improved strength and duc t i l i t y  can 
tained i f  such boundaries are eliminated. 
Also, Piearcey and Ver Snyder showed tha t  imprwe- 
ments i n  high temperature strength and intermediate 
temperature duc t i l i t y  could be obtained with 
M200 (PWA 659) by directional solidification. 
Directional so l id i f ica t ion  techniques were applied 
t o  TAZ-8B t o  produce t e s t  specimens with a columnar 
grain orientation. Fig. 5 i l l u s t r a t e s  t ens i l e  bars 
of TU-8B which have been macroetched t o  delineate 
the grain structure. 
has a random polycrystalline structure.  The direc- 
t iona l ly  so l id i f ied  bar has a columnar grain struc- 
tu re  in which grain boundaries transverse t o  the 
loading axis have essent ia l ly  been eliminated. 
Fig. 6 shows a comparison of the t ens i l e  properties 
of random and directional polycrystalline TAZ-8B. 
Improvements i n  both intermediate temperature 
strength and duc t i l i t y  over the en t i r e  temperature 
range considered were obtained by means of direc- 
t i ona l  solidification. It should be noted tha t  a 
columnar grain structure is particularly desirable 
in  turbine buckets which a re  primarily under cen- 
t r i fuga l  s t ress .  Thus, controlled so l id i f ica t ion  
can be a powerful too l  in.extending the high tem- 
perature capabili ty of superalloys f o r  turbine ap- 
plications and is currently under investigation 
with other NASA alloys. 

well below the safe upper l i m i t  of 2.59. 

Exposure of both TAZ-8B and the  VI-A al-  

Other embrittling phases besides sigma can 
A notable example is the 

Its ef fec t  was t o  

Ver Snyder and Guard have shown 

t?6Pb- 

Vi 

The conventionally cast  bar 

COATINGS FOR NICKEL- AND COBALT-BASE ALLOYS 
In  current a i r c r a f t  gas turbine engines, maxi- 

m operating temperatures of nickel and cobalt- 
base alloys are determined primarily by strength 

considerations. 
protective coatings are commonly used t o  extend the 
time between overhauls since they reduce the de t r i -  
mental e f fec ts  of oxidation and erosion by par t i -  
cles i n  the hot gas stream. 

the  requirements of engines fo r  advanced supersonic 
transports, oxidation res i s tan t  coatings w i l l  play 
an even more important role. In developing high 
strength nickel-base alloys f o r  use a t  higher tem- 
peratures, al loy developers i n  the United States 
have generally decreased the chromium content of 
such alloys, since chromium is detrimental t o  high 
temperature strength. For example, the a l loy  VI-A, 
discussed in  the previous section, contains only 
6.1 percent chromium. Such alloys with low chromi- 
um contents have less inherent oxidation and sul-  
f idation resistance than current turbine blade al- 
loys, most of which contain a t  l ea s t  15 percent 
chromium, If low-chromium alloys are t o  be used 
fo r  thousands of  hours a t  temperatures above 
1800° F (982' C) ,  some means of improving oxidation 
resistance must be found. The NASA L e w i s  Research 
Center has in i t i a t ed  an intensive contractual and 
in-house program t o  develop improved coatings fo r  
both  nickel- and cobalt-base alloys and t o  increase 
the oxidation and sulfidation resistance of such 
materials by minor alloying additions. 

In the United States, most coatings for  
nickel- and cobalt-base superalloys have been de- 
veloped by commercial coatings vendors or  engine 
manufacturers who have kept much of t he i r  data pro- 
prietary, Therefore, there is  very l i t t l e  quanti- 
t a t i ve  information available regarding the time and 
temperature capabili t ies of coated nickel- o r  
cobalt-base alloys under engine o r  simulated engine 
operating conditions. Furthermore, there is re la -  
t i ve ly  l i t t l e  information available which adequate- 
l y  characterizes available coatings o r  defines 
those factors which l i m i t  t h e i r  l i f e  i n  high tem- 
perature service. Since such information is  essen- 
t i a l t o  an orderly program fo r  improvement of coat- 
ings, NASA is sponsoring work a t  the Solar Division 
of the International Harvester Co. t o  analyze a11 
sa l ien t  properties of several selected commercially 
protective coatings applied t o  cobalt- and nickel- 
base alloys. In t h i s  program, the performance of 
such coated alloys i s  being determined in  erosion- 
oxidation r ig s  wherein the materials are subjected 
fo r  long times t o  high velocity (Mach 0.86) combus- 
t i on  gases a t  temperatures in the range 1700° t o  
22000 F (927' t o  1204O C ) .  Such r i g  t e s t ing  is de- 
signed t o  simulate as closely as possible i n  a r e l -  
a t ive ly  inexpensive, controlled laboratory t e s t ,  
major environmental factors involved in  a i r c r a f t  
engine application such as high velocity gas flow, 
repeated thermal cycling, and thermal shock. It 
does not, of course, completely simulate the  s t r e s s  
and vibrational characterist ics of particular air- 
c ra f t  engine operation. This work is being supple- 
mented by in-house tests on erosion-oxidation r ig s  
with similar capabili t ies.  

For t h i s  study, commercially available coat- 
ings were applied by coatings vendors onto a i r f o i l  
shaped specimens of two nickel alloys, IN-100 and 
B1900, and two cobalt alloys, X-40 and WI-52. (De- 
t a i l ed  information on substrate composition, sur- 
face finish,  shape, etc.  , are  reported i n  Ref. 18.) 
Three coatings were evaluated on each of these sub- 
s t ra tes ;  these are believed t o  be representative of 
the best  superalloy coatings currently available in  

Even in  these engines, however, 

A s  material temperatures are raised t o  meet 
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the  United States. 

characterized. Metallomaphic examination wits used 
t o  determine coating thickness, uniformity of 
coverage, distribution of phases and the  hardness 
variation across the coating and substrate. Typi- 
c a l  microstructural features are shown i n  Fig. 7. 
Electron microprobe analyses were used t o  establish 
the distribution of major elements i n  the  coating 
and substrate. I n  addition, phases present on the  
surface of the specimen were ident i f ied  by standard 
X-ray diffraction techniques. The resu l t s  of t h i s  
pre-test characterization of the coatings are sum- 
marized in tab le  11. 

It i s  evident that a l l  of the coatings are of 
the aluminide type, formed in  most cases by reac- 
t i on  between aluminum and the major substrate e l e -  
ments. 
compositional differences between the coatings ap- 
plied by the various vendors, and in  some cases it 
is,evident t ha t  elements such as  chromium, iron, 
titanium and s i l icon  were deposited along with alu- 
minum in  the coating process. It is anticipated 
tha t  similar characterization and analyses a f t e r  
long time exposure in  the burner r ig s  w i l l  identify 
those factors responsible f o r  degradation and fail-  
ure of the coatings and thus establish direction 
fo r  future programs aimed a t  improving the  l i f e  and 
temperature capabili t ies of such coatings. 

it appears t h a t  the bes t  coatings on nickel-base 
alloys have l ives  i n  the  burner r i g  t e s t s  under cq- 
c l i c  conditions of several  thousand hours a t  maxi- 
mum temperatures in  the range 1800' t o  1900' F 
(982' t o  1038O C)  . Coated cobalt base alloys are 
significantly less  oxidation res i s tan t  than coated 
nickel-base alloys. For advanced engines, improved 
coatings w i l l  be needed for both classes of alloys. 
To t h i s  end research is being pursued along several  
l ines  including imprwement of nickel and cobalt 
aluminides, development of o the r  oxidation- 
res i s tan t  intermetall ic compounds and glasses, and 
development of highly oxidation res i s tan t  but com- 
paratively weak alloys such as modified Fe-Cr-A1 
which might be used as th in  claddings on the sur- 
face of a stronger s t ruc tura l  alloy. 

Before testing, the coatings were carefully 

However, there appear t o  be significant 

From the limited data available a t  t h i s  time, 

' DISPERSION STRJ3NGTHENING 

Ever since the production of dispersion- 
strengthened aluminum by Irmann in  1946, (19) inves- 
t iga tors  have attempted t o  achieve similar gains in  
strength in  higher melting point metals. 
the most promising r e su l t s  t o  date have been ob- 
tained with the  nickel-thoria s stem using a 
colloidal-chemical approach. (20s Materials of t h i s  
type  have creep-rupture properties t ha t  should per- 
m i t  increased material temperatures for  stator 
vanes and other low s t ress  applications, but they 
do not have h i  
applications. (% One route t o  achieving higher 
strength systems is  t o  coabine so l id  solution and 
precipitate strengthening with the dispersion (and 
thermornechanical) strengthening. The NASA is ac- 
t i ve ly  participating (along with others) i n  t h i s  
e f fo r t  by investigating methods of producing 
dispersion-strengthened nickel, cobalt, and 
chromium-base alloys. Both sponsored and in-house 
research programs a t  the Lewis Research Center are 
being conducted in  t h i s  area. 

dispersion-strengthened materials is  t o  determine 

Some of 

enough strength for turbine bucket 

An i n i t i a l  objective in development of 

whether a particular process is capable of produc- 
ing the desired distribution i n  terms of par t ic le  
s i ze  and in te rpar t ic le  spacing of s tab le  par t ic les  
(e.@;., oxides) i n  the particular metal matrix of 

par t ic le  s ize  of l e s s  than 0.1 p and an interpar- 
t i c l e  spacing l e s s  than 2 p. 

A var ie ty  of novel approaches have been and 
are being investigated in  the  sponsored program. 
The primary approach being studied with the in- 
house program a t  the  Lewis  Research Center is  the  
"comminution and blend" method which involves the  
blending of u l t ra f ine  powders of the metal matrix 
and the  oxide dispersoid t o  achieve the desired 
dispersion. To achieve the desired par t ic le  s i z e ,  
u l t ra f ine  oxide par t ic les  a re  obviously necessary 
and these are available. To achieve the  interpar- 
t i c l e  spacing tha t  is sought, metal powders appre- 
ciably smaller than the  desired in te rpar t ic le  
spacing are required. (22)  These were not available e 

and methods of comminution fo r  metals and alloys 
have been developed(23) tha t  permit the production 
of the necessary u l t ra f ine  (< 0.5 p) metal powders. 
Recent in-house work with the comminution and blend 
method(24) resulted in  N i  + A1203 materials with 
par t ic le  s izes  of 0.04 p (median s ize)  and an 
in te rpar t ic le  spacing of 1.84 p. The range of 
sizes was 0.017 t o  0.31 p. This work has shown the 
importance and the a b i l i t y  t o  maintain careful con- 
t r o l  of cleaning and densification ra tes  so as  t o  
prevent small quantit ies of impurities from causing 
detrimental reactions e i ther  i n  subsequent proces- 
sing or use. We believe that mechanical milling 
and blending methods offer a number of advantages. 
These include re la t ive  ease of appl icabi l i ty  and 
low cost of production. Perhaps the most important .b 

regards its appl icabi l i ty  t o  complex alloys. 
mechanical milling may be applied as readily t o  a 
highly alloyed matrix as  t o  a simple metal base. 
Colloidal chemical methods on the other hand, 
though readily applicable t o  simple matrix compo- 
s i t ions ,  a re  quite d i f f i c u l t  t o  apply rapidly t o  a 
wide var ie ty  of a l loy  compositions. 
the  mechanical processing techniques are sa t i s fac-  
t o r i l y  worked out, dispersion strengthening affords 
great promise f o r  extending the use temperature 
capabili ty of nickel and cobalt base alloys. 

rn 

.."e 

interest .  We are s t r iv ing  t o  maintain an average i6 

advantage l i e s  in the f l e x i b i l i t y  of the method as  1 
Thus, 

Once a l l  of 

c 0 m s 1 m  MATERIALS 

temperature capabili t ies of nickel and cobalt-base 
materials is t o  develop composite materials i n  
which an inherently oxidation res i s tan t  superalloy 
matrix is  strengthened with more refractory high 
strength fibers.  
ducted at  NASA's k w i s  Research Center t o  develop 
such composites i n  which s m a l l  diameter refractory 
metal or  a l loy  f ibers  a re  embedded i n  a nickel al- 
loy matrix. Recent progress i n  t h i s  research is 
reported in  d e t a i l  i n  Ref. 25; i n  t h i s  paper, we 
w i l l  b r i e f ly  summarize only the highlights of t h i s  
work. 

such composites has been degradation of the 
strength of the refractory a l loy  f ibers  as a resu l t  
of interdiffusion with nickel and/or other consti t-  
uents of the  a l loy  matrix. Fig. 8 i l l u s t r a t e s  the 
extent of such interaction t h a t  occurred during 
consolidation of a composite i n  which 0.008-inch 
diameter commercial tungsten lamp filament wires 
were embedded by powder metallurgy techniques in  a 

Another approach t o  improving the strength and 

An in-house program is being con- 

The major problem encountered i n  developing 
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matrix with a composition Ni-25W-2OCr. 
has been made in  minimizing the extent of such 
interactions. 
ing titanium and aluminum additions were found t o  
be more compatible with the  tungsten f ibe r s  than 
nickel alloys which did not contain these addi- 
t ives.  Studies of the e f fec ts  of f ibe r  diameter 
indicated t h a t  the creep rupture strength of com- 
posites can be optimized by proper fiber diameter 
selection. Generally, small diameter f ibers  are 
more advantageous than large diameter f ibers  fo r  
short-time creep rupture applications. However, 
fo r  long time applications, large diameter f ibers  
a re  superior t o  small diameter f ibers  in systems 
where strength is degraded by interdiffusion. 

forced nickel-base alloys have been produced which 
have s t r e s s  rupture properties superior t o  conven- 
t i ona l  superalloys a t  use temperatures of 2000' and 
2200° F (1093' and 1204' C ) .  
posite consisting of 70 volume percent of 0.015 
inch diametei tungsten wires embedded i n  a Ni-25W- 
15Cr-2Ti-2Al matrix has 100 hour creep rupture 
strengths a t  2000' and 2200' F (1093' and 1204' C)  
of 35 000 p s i  and 14 000 psi, respectively in an 
ine r t  gas environment. 
vaqced nickel-base a l loy  VIA on a density compen- 
sated basis ( a t  a s t r e s s  t o  density r a t i o  of in te r -  
e s t  for buckets of 52 000 inches) indicates t ha t  
the  temperature t o  cause rupture in  e i ther  100 or  
1000 hours i s  approximately 80' t o  90' F (44' t o  
50' C )  higher for  the composite. We believe t h a t  
even stronger composite materials of t h i s  type can 
be achieved by use of improved refractory alloy 
wires of high strength tungsten alloys such as  
those described i n  Ref. 26. 

Progress 

For example, nickel alloys contain- 

Composites of refractory metal f i be r  rein- 

For example, a com- 

Comparison with the ad- 

c m o m  ALLOYS 

Thus f a r  we have primarily discussed nickel- 
and cobalt-base materials for engine applications 
and have indicated how the use temperatures of 
these materials may be increased by alloying, d i -  
rectional solidification, dispersion strengthening 
or by reinforcement with refractory alloy fibers.  
S t i l l  another approach t o  achieving higher turbine 
temperatures involves the use of chromium alloys. 

gine material stem from i ts  high melting point 
(about 700' F or 389' C higher than nickel or co- 
b a l t ) ,  low density (about 20 percent l e s s  than that 
for nickel and cobalt), and higher e l a s t i c  modulus 
(about 42 million ps i  a t  room temperature compared 
t o  about 30 million ps i  for nickel and cobalt). 
The major problems with chromium are i ts  extreme 
br i t t l eness  a t  temperatures below about 300' t o  
500' F (149' t o  260' C) and its reac t iv i ty  with air  
or nitrogen a t  high temperatures. This can lead t o  
even more severe embrittlement. Like most body 
centered cubic metals, chromium exhibits a duc t i le  
t o  b r i t t l e  t rans i t ion  behavior. The ducti le t o  
b r i t t l e  t rans i t ion  temperature (DBTT) may be below 
room temperature f o r  high purity chromium with a 
properly worked microstructure. However, it is 
commonly 300' t o  500° F (.149' t o  260' C )  f o r  chro- 
m i u m  of commercial purity o r  for worked or recrys- 
t a l l i zed  chromium alloys having strength levels of 
in te res t  for application t o  turbine blades o r  sta- 
t o r  vanes of advanced air breathing engines. 
over, prolonged exposure t o  a i r  a t  temperatures 
above approximately 1500° F (816' C) can ra i se  the 
DBTT t o  1800° F (982' C )  or  higher. 
embrittlement is due t o  both solution of nitrogen 

The potential  advantages of chromium as an en- 

More- 

This severe 

and the formation of a hard, b r i t t l e  n i t r ide  layer 
on the surface. 
gest deterrent t o  the use of chromium alloys in  
turbojet  engines. 

Chromium Alloy Development 

research i n  1965, several alloys with a t t r ac t ive  
high temperature strength had been identified. 
Foremost among these were Alloy E (Cr-2Ta-O.5Si- 
0.1Ti) developed in Australia(27) and C207 (Cr-  
7.m-0. Zr-0.2Ti-0.E-O.1Y) developed in  the United 
States.aZ8) The C207 alloy had a 100-hour rupture 
strength of 16 000 ps i  a t  2000' F (1093O C),  thus 
offering a temperature advantage of a t  least 100' F 
(55' C) over the strongest superalloys available a t  
that time. 
ably more ductile, having a ducti le t o  b r i t t l e  
t rans i t ion  temperature below room temperature in  
the optimum condition. 

tracted with the General Electric Company's Flight 
Propulsion Division, the developers of the a l loy  
C207, t o  further develop chromium-base alloys. The 
objectives of t h i s  program were t o  improve both 
high temperature strength and low temperature duc- 
t i l i t y  and t o  increase resistance t o  both oxidation 
and nitrogen embrittlement a t  high temperatures. 
In  general, emphasis w a s  placed on the further de- 
velopment of complex carbide dispersion strength- 
ened systems typified by the a l loy  C207. To date, 
over 200 chromium alloys have been melted and eval- 
uated. The available resu l t s  are presented in  de- 
t a i l  in Ref. 29 and are summarized below. 

cluded in  t h i s  study. 

Nitrogen embrittlement is the  big- 

Prior t o  NASA's sponsorship of chromium a l loy  

Alloy E w a s  l e s s  strong but consider- 

In  1965, NASA's L e w i s  Research Center con- 

Five broad classes of alloy additions were in- 
These are:  

1. Nitridation inhibitors (Y, Th, La) 
2. Solid solution strengtheners (Mo, W, V) 
3. Solid solution duc t i l i zers  (Re, Ru, Co) 
4. Dispersion strengtheners (carbides, bo- 

5. Complex combinations of the above 

Many of the individual alloying ef fec ts  were 
studied in  50 t o  100 gram arc-melted buttons. How- 
ever, more than 60 alloys w e r e  induction melted and 
cast  as four pound ingots. In order t o  minimize 
contamination during melting, y t t r ia -s tab i l ized  
ZrO2 crucibles were used and yttrium additions were 
made t o  deoxidize the melt. Using hydrogen-reduced 
e lec t ro ly t ic  chromium flake and high purity a l loy  
additions, oxygen and nitrogen levels i n  the ingots 
were maintained below a t o t a l  of 200 parts per m i l -  
l ion. 

ded and processed t o  small diameter bar stock by 
hot swaging. Properties evaluated included: 

1. Elevated temperature t ens i l e  strength i n  
vacuum in  both the wrought and recrystall ized con- 
dit ion.  For a few alloys, creep rupture t e s t s  were 
run a t  2100' F (1149' C) i n  helium. 

2. Ductile t o  b r i t t l e  t rans i t ion  temperature 
in tension. 

3. A i r  oxidation and n i t r ida t ion  behavior i n  
the range 1500° t o  2400' F (1815' t o  1316O C)  . 

The major resu l t s  of t h i s  study t o  date are 
summarized below: 

1. The alloy with the bes t  combination of high 
temperature strength and low temperature duc t i l i t y  
is an a l loy  of composition Cr-7.1Mo-l.OM,-o.o9C- 
0.08Y (CI-36). 
the s t ress  relieved condition combines a t ens i l e  

rides,  iotermetall ics) 

. 

The ingots were subsequently machined, extru- 

A s  shown in  Fig. 9, t h i s  a l loy  in  
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strength at  1900' F (1038O C) of 65 000 ps i  with a 
duc t i le  t o  b r i t t l e  t rans i t ion  temperature of 350' F 
(177' C). From the limited data shownintable 111, 
its 100 hour stress-rupture l i f e  a t  2100' F 
(1149' C) is estimated t o  be about 17 000 psi. 
Comparison of the 1000-hour stress-rupture l i f e  of 
t h i s  a l loy  (extrapolated from shorter time data) 
with that of the advanced nickel-base a l loy  VI-A on 
a density compensated bas is  (at a strength/density 
r a t i o  of about 52 000 inches) indicates a potential  
temperature advantage of approximately ZOO0 F 
(111' C) f o r  the  chromium alloy. 

Cr-12.7W-0.94Ta-0.93Hf-0.08C-0.29 ( Y  + La) a l loy  
(CI-45). This a l loy  had t ens i l e  strengths above 
80 000 and 30 000 ps i  a t  1900' and 2400' F (1038' 
and 1316O 6) , respectively. However, i t s  duc t i le  
t o  b r i t t l e  t rans i t ion  temperature was above 700' F 
(371' C ) .  When compared a t  ident ica l  atomic per- 
cent levels, tungsten is a more potent solid solu- 
t i on  strengthener for chromium than is  molybdenum; 
however, it has a more adverse e f fec t  on workabil- 
i t y  and low temperature duc t i l i ty .  

3. Several d i lu te  carbide-containing o r  
boride-containing alloys exhibited ducti le t o  b r i t -  
t l e  t rans i t ion  temperatures below room temperature 
combined with tens i le  strengths in  the wrought con- 
dit ion above 35 000 ps i  a t  1900' F (1038' C ) .  How- 
ever, these ducti le chromium alloys do not offer 
any temperature advantage over advanced nickel base 
superalloys a t  s t r e s s  levels of in te res t  f o r  t u r -  
bine blade application. 

4. The oxidation and n i t r ida t ion  resistance in  
a i r  of Cr-Y alloys containing Nb, Ta and T i  carbide 
dispersions is  markedly inferior t o  those with Hf-  
r i ch  or  Zr-rich carbide dispersions. Several H f C -  
containing alloys showed no n i t r ida t ion  and only 
s l i gh t  in te rna l  hardening a f t e r  25  hour exposures 
as  high as  2400' F (1316' C) .  

t i ve  than Y alone in retarding n i t r ida t ion  of  al- 
loys with NbC, TaC and T i c  dispersions, a t  l ea s t  
through 100 hours a t  2100' F. Although Ia and Y 
are very beneficial  from the standpoint of  oxida- 
t ion  and n i t r ida t ion  resistance, they have very low 
so lub i l i t i e s  i n  carbide containing alloys. If not 
controlled t o  levels l e s s  than about 0.1 t o  0.2 
percent they promote the formation of low melting 
eutectics which segregate t o  grain boundaries and 
i m p a i r  the workability of  these alloys. 

6. Several noncarbide containing alloys ex- 
hibited outstanding resistance t o  n i t r ida t ion  in  
25 hour exposures a t  2400' F (1316' C) . 
cated in  tab le  N, the binary Cr-66 Re alloy 
showed no evidence of n i t r i de  layer formation or  
internal hardening a f t e r  t h i s  exposure. 
a Cr-O.17Hf-O.13Th-O.17Y alloy showed no n i t r ide  
layer formation and only s l igh t  hardening t o  a 
depth of about 1 m i l  a f t e r  the same exposure. 
l a t t e r  alloy is much too weak while the high rheni- 
um alloy would be prohibitively expensive for use 
as  a s t ruc tura l  material. However, t h e i r  excellent 
n i t r ida t ion  resistance suggests the use of  such al- 
loys as nitrogen bar r ie rs  i n  the form of a th in  
surface cladding on a stronger alloy. 

high temperature strength a re  now available. The 
tens i le  duc t i le  t o  b r i t t l e  t rans i t ion  temperature 
of such alloys is well above room temperature, but 
may be only 350' t o  400' F (177' t o  204O C)  i n  the  
optimum condition. 
temperature remains a goal of our chromium a l loy  
research, we believe tha t  it is unlikely tha t  t h i s  

2. The highest strengths were observed f o r  the 

5. Additions of Ia or La + Y were more effec- 

A s  indi- 

Similarly 

The 

In  summary, chromium alloys with a t t rac t ive  

Although good duc t i l i t y  a t  room 

can be achieved in  high strength alloys. 
of duc t i l i t y  achieved i n  the  be t t e r  alloys developed 
i n  t h i s  program may be adequate for turbine blades 
o r  stator vanes, since the duc t i le  t o  bri t t le tran- 
s i t i o n  temperatures of these alloys are well below 
normal operating temperatures f o r  these parts. The 
most c r i t i c a l  problem which is yet t o  be solved is  
nitrogen embrittlement during high temperature air 
exposure, since t h i s  can lead t o  duc t i le  t o  b r i t t l e  
t rans i t ion  temperatures above 1800° F (982' C) ,  
c lear ly  unacceptable for  engine components. 

The leve l  

Coatings f o r  Chromium Alloys 
Simultaneously with the  chromium a l loy  programs 

described, above, NASA sponsored several  research 
programs and conducted in-house research aimed a t  
preventing nitrogen embrittlement by use of external 
surface coatings o r  claddings on a Cr-5W-O.05Y sub- 
s t ra te .  The approaches studied and an indication of 
the overall  scope of the program are as  follows: 

1. Aluminide coatings - Chromalloy Corpora- 
tion. (30) 

In t h i s  program, the protective capabili ty of 
aluminide coatings deposited by pack cementation 
techniques was investigated. Coating systems stud- 
ied included A l ,  A1-Fe, A1-Co, A1-Ti,  Al-Fe-Co, A l -  
Co-Ti, A1-Fe-Ti and modificat.ions of these. 

national Harvester. ( 317 
s i l i c ides  of Ti-Cr,  Ti-Cr-V, and Ti-Mo over diffu- 
sion bar r ie rs  of  e i ther  vanadium or  rhenium. Be- 
cause of d i f f i cu l t i e s  with the  diffusion bar r ie rs ,  
the capabili t ies of the s i l i c ides  were not adequate- 
l y  determined. 

3. Ductile claddings - Bat te l le  Memorial In- 
s t i t u t e .  (32) 

The use of 5 m i l  f o i l s  of oxidation res i s tan t  
alloys such as Ni-30Cr and Ni-XOCr-2OW applied t o  
the surface by hot gas pressure bonding was inves- 
t igated.  Such clads were generally applied over 
tungsten o r  tungsten and platinum f o i l  diffusion 
barriers.  

Research Center. ( 33) 

trogen diffusion bar r ie rs  w a s  explored. 

a l l  the systems studied or a complete assessment of 
the resu l t s  of these investigations. It is suffi- 
cient t o  s t a t e  that none of the systems investigated 
has shown a high degree of promise. Although sever- 
a l  of the systems showed excellent oxidation re- 
sistance a t  2100° F (1149O C), and were effective i n  
preventing n i t r ide  formation on the Cr-5W-O.05Y sub- 
s t r a t e ,  embrittlement resulted from other causes. 
The causes of embrittlement i n  a l l  cases have not 
been established; however, solution hardening by 
diffusion of nickel or  aluminum in to  the substrate 
appeared a t  least par t ia l ly  responsible. The d i f -  
f'usion bar r ie rs  used, including W, Pt, V and Re were 
generally unsatisfactory in  varying degrees. It is 
apparent that new and d i f fe ren t  approaches t o  over- 
coming the problem of nitrogen embrittlement of 
chromium alloys need t o  be explored. 

2. S i l ic ide  coa t i  gs - Solar Division of  In te r -  

This program involved deposition of complex 

4. Noble metal diffusion bar r ie rs  - NASA Lewis 

The use of electrodeposits of Pd and Pt as  ni- 

Space does not permit a detailed description of 

COATINGS FOR REFRA(;TORY METALS 

Because of t h e i r  high melting points and good 
high temperature strength, alloys of the refractory 
metals tungsten (W) , tantalum (Ta) , molybdenum (Mo) , 
and niobium (Nb) have frequently been considered for 
use in  a i r c ra f t  gas turbine engines. However, a l l  

1 
4 
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of these metals oxidize 
above 1500' F (816' C) . 
ance can be improved by 

rapidly a t  temperatures 

alloying, even the most 
Although oxidation r e s i s t -  

oxidation res i s tan t  alloys f a l l  far short  of meet- 
ing the requirements of gas turbine operation. 
Thus, the use of protective coatings appears t o  of- 
f e r  the only hope fo r  providing suitable oxidation 
resistance. Unfortunately, coatings for  refractory 
metals have generally not demonstrated the  high de- 
gree of r e l i a b i l i t y  required f o r  a i r c r a f t  engine 
use. 

In 1965, NASA engineers reviewed possible op- 
portunities f o r  u t i l i z ing  refractory metals i n  ad- 
vanced turbojet  engines and concluded that the use 
of coated tantalum alloys f o  s t a to r  vanes merited 
additional consideration. ('If The s t a to r  vane ap- 
plication was viewed as being more promising than 
the rotating bucket application i n  which f a i lu re  of 
one bucket due t o  loca l  coating defects could cause 
severe damage t o  other buckets or  engine compo- 
nents. Tanta$um alloys had received very l i t t l e  
study f o r  a i r c r a f t  engine use but the  re la t ive ly  
high melting 
3400' F, 1871 
countered i n  other refractory a l loy  systems with 
low melting o r  vo la t i l e  oxides might be l e s s  severe 
fo r  tantalum alloys. Further, tantalum alloys with 
suitable strength and fabr icabi l i ty  f o r  s t a to r  vane 
application had already been developed. One of 
these, T-222 (Ta-9.6W-2.4Hf-O.O1C), appeared t o  
have adequate strength fo r  vane use a t  temperatures 
up t o  at  l ea s t  2400' F (1316O C) ,  and w a s  therefore 
selected as the substrate material for  a program t o  
develop oxidation res i s tan t  coatings fo r  tantalum 
a l loy  nozzle vanes. 

To date, significant progress has been made by 
the contractor, Solar Division of Internation Har -  
vester Company, i n  developing a group of s i l i c ide  
coatings base o tungsten, molybdenum, vanadium, 
and t i t a n i ~ m . 7 ~ ~ 7  These coatings are applied by a 
two-step process. F i r s t ,  a modifier layer consist- 
ing of tungsten, molybdenum, vanadium and titanium 
metal powders suspended in  a suitable car r ie r  is 
applied by s lur ry  techniques and is pa r t i a l ly  s in-  
tered in  vacuum. This re la t ive ly  porous coating is 
then s i l ic ided  by pack cementation in  argon t o  form 
a mixture of s i l i c ides .  
i n  the pores of the modifier layer appears t o  con- 
t r ibu te  t o  the  oxidation resistance of these 
coatings. 

t o  date has a modifier layer of composition 35MO- 
35W-15V-15Ti. After s i l i c id ing ,  t h i s  coating re- 
producibly protected specimens of the T-222 a l loy  
f o r  600 hours a t  both 1600' F (871' C) and 2400° F 
(1316' C) during cyclic exposure t o  s t a t i c  air. 
One sample survived 1064 hours of furnace oxidation 
a t  2400' F (1316' C). This is  viewed as a s ign i f i -  
cant advance i n  the state-of-the-art of coatings 
fo r  tantalum alloys since prior t o  t h i s  development 
the  bes t  available coatings provided only 30 t o  
50 hours of protection in  the same temperature 
range. 

the  composition of t h i s  coating system and t o  fur- 
ther  evaluate such coated tantalum alloys i n  bur- 
ner r igs  which more closely simulate a i r c r a f t  en- 
gine operating conditions. 
problem of impact damage such as might r e su l t  from 
a foreign object passing through the engine is 
being investigated and attempts w i l l  be made t o  

oint of the oxide of tantalum (above 
C) ,  suggested tha t  d i f f icu l t ies  en- % 

Excess s i l i con  deposited 

The most oxidation res i s tan t  coating developed 

Studies a re  currently underway t o  optimize 

The potentially serious 

modify the coating, as necessary, t o  promote self- 
healing of parts subject t o  such damage. 

CONCUTDING RFSIAIIKS 
Over the past several  years, NASA has conducted 

an extensive in-house and contractual program t o  
develop improved materials fo r  advanced air  breath- 
ing engines. 
i n  several  areas. 
the  development of an advanced cast  nickel-base al- 
loy, NASA-TRW VI-A. This a l loy  shows approximately 
a 50' F (28O C)  improvement i n  use temperature 
over the strongest superalloys currently i n  use. 
Even larger improvements over the  strengths of cur- 
ren t ly  used superalloys have been achieved i n  chro- 
m i u m  alloys and metal-matrix composite materials. 
However, many problems remain t o  be solved before 
the opportunities indicated by these l a t t e r  devel- 
opments can be u t i l i zed  in  a i r c r a f t  engines. 
most among the needs a t  t h i s  t i m e  is tha t  f o r  i m -  
proved oxidation, nitr idation, and erosion resis- 
t an t  coatings t o  permit use of these stronger mate- 
rials a t  temperatures consistent with the i r  , *  
strength potential. 

Considerable progress has been made 
O f  most immediate importance is 

Fore- 
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TABLE III. - STRESS-RUPTURE PROPERTIES OF STRESS-RELIEVED 

CHROMIUM ALLOYS AT 2100’ F (1149’ C) 

~~ ~ 

Cr-O.17Y 

Nominal composition, 
weight percent 

0.13 2100 (1149) 2.3 1 to 4 1 to 4 
2400 (1316) 10.6 2. 5 4 

Cr-7.1Mo- l.ONb-0.09C-0.08Y 

28. 3 
90.0 

16. 1 
43.1 

Cr-7.1M0-2.0Ta-0.09C-0.08Y 

Cr-7.1Mo-0.5Ti-0.09C-0.08Y 

Cr-7.1Mo- l.OHf-O.5Zr-0.09C-0.08Y 

4.5 17 
24 40 

4 15 
5 to 7 19 

19.8 

0.02 

.08 

Elongation 
(percent) 

25.0 
38.4 

27. 5 

32. 1 

32, 2 

2100 (1149) 
2400 (1316) 

2100 
2400 

TABLE IV. - SUMMARY OF AIR OXIDATION BEHAVIOR OF SELECTED, 

WROUGHT CHROMIUM ALLOYS 

(weight percent) 
(weight 
percent) 

Total weight I Nitride 1 Depth 

Cr-12.7W-O.94Ta-O.93Hf- 
0.08‘2-0.29 (Y + La) 

Cr-7.1Mo- 1.0%-0.09C- 

Cr- l.OHf-O.5Zr-0.09C- 
0.17Y 

Cr-  12.8Re-0.93Ta-0.92Hf- 
0.08C-0.29 (Y + La) 

Nitridation-resistant alloys 

Cr-66Re 
2400 6.2 

Arc melted alloy; no yttrium added. ** 
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CEI 
4 
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Fig. 1. - 15 000 psi stress rupture properties of cast nickel- 
base alloys. 
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(b) Alloy C0-25W-lTi-lZr-3Cr-ZRe-0.4C. 

Fig. 2. - Stress-rupture properties of chromium and 
c h  romiu  m-rhen iu  m modified cobalt -base alloys. 
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Fig. 3, - Oxidation behavior of several nickel 
base alloys at 1900" F. 
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Fig. 5. - Random and direct ional  polycrystal macros t ruc ture  of TAZ-8B. 



I w 

8 

30 

20 

10 

- O2 0 

Temperature, "F 

Fig. 6. - Tensile properties of TAZ-8B. 
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Fig. 7. - Microst ructure and hardness characterization ofcoating C on 
IN-100 alloy. 
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Transverse section. X250. 

Longitudinal section. X100. 

Fig. 8. - Microstructure of composite made by sintering and hot 
pressing of tungsten wires in Ni-25W-20Cr matrix. (Sintered 
1 h o u r  at 2000" F, hot pressed - 2 hours at MOO" F, 20,000 
psi.) 
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